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1.  Introduction

Although the description of charge transport in disordered 
organic semiconductors is of high importance for device 
applications and for the fundamental understanding of mate-
rial properties, a comprehensive, transparent and self-consis-
tent theory that can accurately predict transport properties is 
yet to be found. This is particularly unsatisfactory because 
a simple and clearly defined model framework existed for 
years: Charge carriers move via incoherent tunneling (hop-
ping) between spatially and energetically distributed localized 
states with a Gaussian energy spectrum [1–3]:
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where σ is the energy scale of the density of states (DOS), 
usually estimated as σ≈0.1 eV [1] and N is the concentration 
of randomly distributed localized states (sites) that charge 

carriers can use for hopping transport. The rate for a carrier 
transition from an occupied site i to an empty site j, separated 
by a distance rij, is usually assumed [1, 4] to be described by 
the Miller–Abrahams expression [5]
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Here, α is the localization length of charge carriers in the local-
ized states, usually of the order of 10(–8) cm [6, 7], εi and εj 
are the carrier energies on sites i and j, respectively, k is the 
Boltzman constant and T is the temperature. The energy dif-
ference between states i and j must be compensated, for 
example, by absorption or emission of phonons. The prefactor 
ν0, often called the attempt-to-escape frequency, depends on 
the interaction mechanism that causes transitions. In the case 
of interaction with phonons, its value is usually assumed close 
to the phonon frequency [4], ν0≈1012  s−1. Due to the inter-
play between the spatial term in equation (2), dependent on 
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parameters characterized by the product Nα3 and the energy 
term, dependent on temperature and site energies characterized 
by the ratio σ/kT, charge transport at low temperatures is domi-
nated by more distant transitions than at higher temperatures, 
i.e., transport takes place in the variable-range-hopping (VRH) 
mode [8]. If spatial positions and energies of localized states 
can be considered independent from each other, this model is 
traditionally called the Gaussian Disorder Model (GDM).

The most comprehensive theoretical tool to describe hopping 
transport in disordered materials is the percolation theory [8–11].  
Particularly simple is its application to lattice models with transi-
tions only between nearest neighboring sites [8]. Such a transport 
mode is called the nearest-neighbor-hopping (NNH) on a lattice. 
Percolation theory for this kind of transport was developed in the 
1970s [8]. For the NNH on a cubic lattice with Gaussian DOS 
given by equation (1), it predicts that thermal activation of car-
riers to a particular energy level Ec dominates charge transport 
[12]. The energy Ec is determined by the condition [12]
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E

c

c

� (3)

where xc is the percolation threshold for the site percola-
tion problem. Using the value xc = 0.31, Schönherr et al [12] 
obtained Ec ≈ −0.6σ. A very close result Ec ≈ −0.5σ for the 
same problem has recently been published by Cottaar et al 
[13]. Since the value of xc is sensitive to the geometrical struc-
ture of the chosen regular lattice, the value of the energy Ec 
determined via equation (3) must also depend on the lattice 
structure. Therefore, the NNH on a lattice can hardly be suit-
able to study charge transport in a spatially disordered organic 
material, where transport was shown to take place via VRH 
[1]. While the application of the percolation theory to NNH 
on a lattice is a straightforward exercise [8], the derivation of 
the percolation approach for the VRH is a much more compli-
cated task [8]. Aside from the uniform DOS [8], only in the 
case of an exponential DOS, g(ε) = g0exp(ε/ε0), precise results 
not only for the exponentially strong dependences of transport 
coefficients on material parameters, but also for the slowly 
varying preexponential factors, could recently be obtained by 
percolation theory applied to VRH [14].

An alternative powerful theoretical method to describe 
hopping transport in systems with steeply energy-dependent 
DOS, complementary to the percolation theory, is the concept 

of the transport energy (TE). The essence of the TE approach 
is the ability to describe hopping transport via sites distrib-
uted in space and energy in full analogy with the multiple-
trapping (MT) model [15]. The MT model has been developed 
to describe charge transport in inorganic disordered materials, 
such as chalcogenide glasses and amorphous silicon [16–18], 
which possess a so-called mobility edge, i.e., the energy level 
that separates extended states with rather high carrier mobility 
from the localized states, which can be considered as traps. 
In the MT model a charge carrier moves only via delocalized 
states with energies above the mobility edge. This motion is 
interrupted by trapping into localized states with subsequent 
activation of the carrier back into the conducting states at the 
mobility edge. Transport in the framework of the MT model 
is shown schematically in figure 1. The advantage of the MT 
charge transport mode as compared to the VRH, is the pos-
sibility of exact theoretical treatment by analytical equations 
under equilibrium and non-equilibrium conditions and for 
various shapes of the DOS [19–21].

In the following section 2, various approaches and different 
definitions of the TE are summarized in order to point out 
the ambiguity of the term transport energy. In section 4 the 
popular numerical approach to the TE as the most frequently 
visited energy in Monte Carlo simulations is proven not to 
be related to the long-range transport. We suggest an alterna-
tive numerical procedure in section 5 and show that its results 
agree well with the analytic derivation of the transport energy 
by Oelerich et al [22], the important steps of which are briefly 
presented in section 3. In section 6 we address the issue of 
using the TE for description of non-equilibrium processes in 
the GDM. Concluding remarks are gathered in section 7.

2. The transport energy

In 1985 Monroe [23] has shown that in the case of the expo-
nential DOS one can describe VRH in the framework of the 

Figure 1. Schematic view of the MT transport mode. The carrier 
motion in the conduction band is interrupted by trapping into and 
subsequent activation from localized states (traps).

Figure 2. Schematic view of charge transport via the transport 
energy in a system with Gaussian DOS. The carrier distribution, 
with its maximum at the equilibration energy −σ2/kT, is drawn with 
a red background.
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MT formalism by replacing the mobility edge in the MT 
model by some particular energy level εt, that he called the 
transport energy (TE). A slightly different derivation of εt was 
later suggested by Baranovskii et al [24]. The latter approach 
was soon extended [25] for systems with other than expo-
nential energy spectra, in particular with a Gaussian DOS 
described by equation (1). Schematic movement of charge 
carriers via activation to the TE in a system with Gaussian 
DOS is shown in figure 2. It is worth emphasizing that the 
value εt of the TE is determined by the interplay between the 
term in equation (2) dependent on spatial parameters and the 
term dependent on temperature and site energies, i.e., the TE 
reflects the essence of the VRH transport mechanism [23–25].

Numerous derivations of the value of εt have been sug-
gested in the literature and there is a lot of confusion in this 
respect. Studying VRH in systems with exponential DOS 
in the framework of the percolation theory, Grünewald and 
Thomas [26] have shown that in thermal equilibrium the dc 
conductivity σdc can be represented in the Arrhenius form,

σ ε ε∝ − −
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⎠
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where εF is the Fermi energy and ε* is some energy level 
dependent on the parameters Nα3 and kT/ε0, where ε0 denotes 
the energy scale of the exponential DOS. Later, the descrip-
tion of the VRH in the exponential DOS using percolation 
theory has been attempted by Vissenberg and Matters [27], 
though with a lower accuracy as compared to the initial deri-
vation of Grünewald and Thomas [14]. The lower accuracy 
of the approach by Vissenberg and Matters is due to the dif-
ferent interpretation of the percolation criterion as compared 
to the classical one formulated by Pollak [11] and used by 
Grünewald and Thomas: In order to establish infinite perco-
lation, the classical recipe demands an average number of 
Bc≈2.7 neighbors around each site, to which the transition rates 
are the highest and which belong to the percolation cluster. 
Vissenberg and Matters [27] instead averaged over all sites in 
the system, which leads to less accurate results as evidenced 
by comparison to the exact solution of the VRH problem for 
the exponential DOS obtained by Nenashev et al [14].

Percolation theory based on the classical recipe [11] has 
also been developed to describe the VRH in the GDM [28–30],  
i.e., in a random system of sites with a Gaussian energy distri-
bution. It was shown that in thermal equilibrium at low tem-
peratures or at high concentrations of carriers, cases in which 
the Fermi level εF is situated above the equilibration energy 
ε∞ = −σ2/kT, the temperature dependence of the dc conduc-
tivity σdc exhibits a simple activated behavior similar to equa-
tion (4) with ε* determined by the relation
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where β is a constant and s ≈ −ln1/2(Q) is a logarithmic func-
tion of Nα3 and σ/kT.

The simple forms of equations (4) and (5) might lead to 
the conclusion that in systems with exponential or Gaussian 
DOS the VRH takes place by activation of charge carriers 

towards the energy ε*. However, the r-dependent term in 
equation (2) plays an equally important role for VRH as the 
thermal activation. Therefore, one can hardly assume that 
the description of the VRH as simple activation of carriers 
towards the energy level ε* would mean that carriers actu-
ally conduct moving around that energy level. One should 
instead interpret the energy level ε* in equation (4) as an 
‘effective’ energy level serving formally to mimic the com-
bined effects of the spatial tunneling and of the activation in 
energy. Therefore, percolation theory is not a suitable tool to 
determine the ‘real’ energy level that charge carriers have to 
visit in order to provide transport in the VRH regime. Mixing 
up the effective TE ε* with the real TE εt is probably the main 
reason for the confusion with respect to the term ‘transport 
energy’. While the effective TE ε* serves as a formal tool to 
describe the VRH as a simple activation, the real TE εt char-
acterizes the actual transport level at which carriers conduct 
via spatial tunneling.

The difference between these effective and real TEs 
becomes more transparent if one compares the expressions for 
the mobility of charge carriers μ derived in various approaches. 
After deriving εt for the GDM [25] in full analogy with the 
derivations for the exponential DOS, Baranovskii et al [31] 
suggested the following expression for the carrier mobility:
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where R(εt) is the typical distance between localized states 
with energies below εt. Working with the effective TE εeff, 
Arkhipov et al [32] and Nikitenko et al [33] suggested a 
slightly different expression for the carrier mobility:
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Taking into account that the values of μ0 in equation (6) 
and μ͠0 in equation (7) are very close to each other [31–33], 
it is apparent that the meaning of the effective TE εeff is dif-
ferent to that of the TE εt. The effective TE εeff in equation 
(7) is denoted differently to the energy ε* in equation (4) par-
ticularly because the percolation nature of the VRH has not 
been taken into account in the derivation of εeff by Arkhipov 
et al [32] and Nikitenko et al [33]. The same is true for the 
initial derivation of the εt in the GDM by Baranovskii et al 
[25]. Later Oelerich et al [22] derived the equation for εt in 
the GDM taking into account the percolation criterion and 
extending this concept for finite carrier concentrations n. 
This approach is outlined in section 3. The dependence of 
the ‘effective’ transport energy εeff on n has been derived by 
Arkhipov et al [34].

Another interesting definition of the TE was suggested by 
Schmechel [35], who, in contrast to all other derivations of the 
TE, did not use this quantity to calculate the carrier mobility, 
but instead derived the TE from the previously calculated dc 
conductivity by introducing a differential energy-dependent 
dc conductivity. The percolation nature of the cluster of sites 
responsible for the VRH has not been taken into account in 
Schmechel's derivation.
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Martens et al [36] essentially repeated the derivation by 
Baranovskii et al [25] also not taking into account the percola-
tion nature of the VRH transport.

Sometimes the following arguments are used to deter-
mine the position of the TE in the GDM [1, 37–39]. First 
one assumes that the temperature dependence of the carrier 
mobility μ(T) is completely decoupled from the dependence 
on the concentration of sites N. Then one uses the expression 
for μ(T) in the form obtained in computer simulations [1]
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with =C
2

3
. Assuming that transport is governed by activa-

tion of carriers from the equilibration energy ε∞  =  −σ2/kT 

towards some transport level εB, one obtains from equation (8) 
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. Oelerich et al [22] 

argued that the level εB can hardly be considered as a good 
candidate for the TE since in thermal equilibrium not all car-
riers occupy energies equal to ε∞  =  −σ2/kT, but are instead 
distributed around ε∞ in a broad energy range with the width 
[1] of the order σ. Carriers with energies in the upper part of 
that distribution contribute significantly more to transport than 
carriers from the lower part of the distribution, since activa-
tion to the transport level εt is exponentially easier for carriers 
with higher energies. The effective activation energy σ2/2kT is 
therefore essentially smaller than σ2/kT.

Several algorithms have been developed and applied to 
determine the value of the TE by Monte Carlo computer 
simulations. Schönherr et al [12] assumed that ε∞(T) must 
ultimately approach an asymptotic value as a function of tem-
perature because of the Gaussian DOS profile. Their computer 
simulations suggest that for σ/kT > 6, the value ε∞(T) ≈ −1.8 σ  
is attained. The activation energy of the mobility obtained in 
those simulations caused the assumption that the transport 
level is situated at an energy 0.70σ above the center of the 
Gaussian DOS [12]. The drastic discrepancy between this 
result and the value Ec ≈ −0.6σ obtained using equation (3) 
ultimately led to the conclusion that percolation theory is not 
suitable to account for hopping transport in the GDM [12]. 
In fact, this conclusion is due to the small size of the simu-
lated array of sites. At small temperatures sites with energies 
around ε∞ = −σ2/kT were statistically not present in the system 
and the simulated position of ε∞(T) at low temperatures cor-
responded simply to the smallest energy still present in the 
simulated array of sites. Therefore this value did not depend 
on T in the simulations by Schönherr et al [12]. No satura-
tion would have been recognized if the size of the simulated 
system had been increased.

Another computer algorithm to determine the position of 
the TE was used by Cleve et al [40], who suggested to trace 
the energies of sites targeted by carriers in hopping transi-
tions during Monte Carlo simulations and to determine the 
position of the TE as the energy of the most frequently tar-
geted sites. This algorithm has been used in several numerical 
studies [37, 41, 42]. Hartenstein and Bässler [37] recognized, 

however, that due to oscillations of carriers within pairs of 
spatially and energetically close sites the most frequently tar-
geted energy is not the energy essential for charge transport. 
The effect of such oscillations for the most frequently targeted 
sites has been addressed in analytical studies [43] and in com-
puter simulations [42]. Very recently a comprehensive study 
of this effect has been provided by Mendels and Tessler [44], 
who suggested the analytical and numerical methods how to 
exclude the effect of frequent oscillations. The obtained dis-
tribution of targeted energies have not been related though to 
long-range charge transport [44]. In section 4 we address the 
issue of frequent carrier oscillations in detail, also showing 
that the algorithm suggested by Cleve et al is not suitable to 
find the position of the TE.

In section 5 we suggest a novel numerical algorithm 
as an alternative approach, which allows one to determine 
the position of the TE responsible for the long-range VRH 
transport in the GDM. The algorithm is checked by applica-
tion to the exactly solvable model of the NNH on a lattice. 
Straightforward computer simulations of the VRH in the 
GDM carried out in the framework of this algorithm reveal the 
analytical estimate of the TE by Oelerich et al [22] as valid. In 
that analytical estimate one assumes that the TE corresponds 
to the target energy which maximizes the rate of carrier transi-
tions upward in energy accompanied by tunneling over a dis-
tance typical for sites with energies below TE. This approach 
is outlined in section 3.

3.  Analytic estimate of the transport energy

Let us briefly repeat the important steps in the analytical deri-
vation of the TE following [22, 24, 25, 31, 45]. The obtained 
value for the TE will be compared with numerical results in 
section 5.

Consider a carrier in a state with energy εi. According to 
equation (2), the typical rate of a downward hop of such a car-
rier to a localized state deeper in energy is [22]

⎡
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The typical rate of an upward hop of such a carrier to a local-
ized state with energy εx > εi is

⎡
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δ= − −↑
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kT
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2 ( )
,i x
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where δ = εx − εi > 0 . Note, that this expression is not exact: 
The considered distance r(εx) is based on all empty states with 
energies deeper than εx. For the Gaussian DOS this is equiva-
lent to considering a slice of energy with the width of the order 
σ. This works for a DOS that varies slowly compared to kT, 
but not in general. It is also assumed for simplicity that the 
localization length α does not depend on energy. The latter 
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assumption can be released easily on the cost of a somewhat 
more complicated form of the equations. We will analyze the 
hopping rates at a given temperature T and try to find out the 
energy level εx, which provides the fastest typical hopping rate 
for a charge carrier initially placed at a site with the energy εi. 
The corresponding energy εx is determined by the condition

ν ε ε
ε

∂
∂

=↑( , )
0.i x

x
� (12)

It is easy to show [24, 25] that the target energy εx determined 
by equation (12) does not depend on the initial energy εi and 
hence is universal for given parameters Nα3 and σ/kT and can 
be considered as the transport energy εt. It means that from 
states below εt carrier transitions essential for charge trans-
port occur to the vicinity of εt, while transitions from states 
with energies higher than εt occur downwards in energy. This 
is the essence of the TE concept. After relaxation towards εt 
the behavior of carriers resembles the MT mode [15] with εt 
playing the role of the mobility edge [23–25].

Solving equation (12) for εx, the TE εt is then determined by [22]
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The factor Bc in this expression accounts for the percolation 
nature of the hopping transport, i.e., for the necessity to pro-
vide a continuous path via sites separated by appropriate dis-
tances. Accurate estimates give [46] the value Bc = 2.735.

4.  On the most frequently visited energy

In this Section we highlight why computer algorithms based on 
tracing the energies of most frequently visited sites are not suit-
able to determine the position of the TE. In such algorithms one 
counts the number of carrier transitions, which, in course of a 
standard Monte Carlo simulation, bring the carrier into a partic-
ular energy interval. The statistics of such events is then plotted 
as a histogram with number of hops per energy interval. The 
peak of this histogram, i.e., the most frequently visited energy is 
interpreted as pointing at the position of the TE [40–42].

Although it has been doubted that such an algorithm is 
accurate enough to determine the position of the TE [37, 42], 
the most frequently visited energy is often used not only to 
determine the TE, but even for conclusions on the existence or 
non-existence of the TE [41]. Therefore we find it instructive 
to analyze the approach based on the most frequently visited 
energy in more detail. Below, we derive an analytic expres-
sion for the most frequently visited energy and validate it via 
comparison with computer simulations. We will focus on the 
Gaussian DOS, although the treatment of the exponential DOS 
is very similar. The derivation shows which hops determine 
the energy in question and that these hops cannot be the ones 
decisive for mobility or other long-range transport coefficients.

We will determine the frequency of hops f(εj) d εj with the 
target energy within the interval [εj, εj+d εj]. Let us assume that 
the electron concentration is low and that only a weak external 

electric field is applied. The occupation probability for any 
site with energy ε is then given by a Boltzmann distribution

Nε ≈ ≡ε ε ε− −P ( ) e e e ,kT kT kT
B

/ / /F� (14)

where the normalization constant N  is determined by the con-
centration of electrons. The expected frequency of hops to a par-
ticular site with the energy εj is determined by integrating the 
hopping rate νij = ν(εi, εj, r) (see equation (2)) over all possible 
initial energies εi and hopping distances r. The contributions 
from sites with the energy εi and distance r are weighted by the 
expected number of such sites g(εi) and by the probability PB (εi) 
that the initial site is occupied. The resulting frequency of hops 
f(εj) to one site with energy εj, weighted by the concentration 
of such sites g(εj), gives the frequency of hops to the energy εj.

It is convenient to evaluate the hop frequency separately 
for hops upward and downward in energy, since the form of 
the hopping rates equation (2) is different for upward and 
downward hops. The frequency of upward hops to the energy 
interval [εj, εj+d εj] per unit system volume and energy, is
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The integral over r can be evaluated as
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∞
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By inserting the Gaussian DOS g(ε) from equation (1), we obtain
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Similarly, by adjusting the limits of the energy integral in 
equation (15) and using the right form of the hopping rates 
ν(εi, εj, r) (see equation (2)), the frequency of downward hops 
arriving at εj can be evaluated as
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The total frequency of hops to the energy εj is obtained by 
adding the frequencies of upward and downward hops

ε ε ε= +f f f( ) ( ) ( ) .j j jup dn� (19)

The energy εpeak, which maximizes f(εj), is our desired quan-
tity, the most frequently visited energy. It has previously been 
calculated in Monte Carlo simulations [37, 42]. In addition to 
the peak energy of f(εj), we also calculate its average energy,

∫ ∫ε ε ε ε ε ε〈 〉 =
−∞

∞

−∞

∞

f d f( ) / ( ) d .j j j j j j� (20)

Both 〈εj〉 and εpeak are determined numerically.
The two energies εpeak and 〈εj〉 turn out to be very close to 

each other, since the distribution of f(εj) is almost symmetric. 
This will become clear from the results in figure 3. We prefer 
〈εj〉 as compared to εpeak, since the average is easier to deter-
mine in a simulation. Furthermore, a numeric evaluation of 
equation (20) shows that
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ε σ〈 〉≈ −
kT2

,j

2

� (21)

to an accuracy of 10 digits. Note that f(εj) depends on the 
localization length α only via the prefactor α3. This means 
that both εpeak and 〈εj〉 are independent of α, which is a first 
hint to why this approach is insufficient for transport energy 
calculations.

The integral in equation (16) reveals the hops contributing 
mostly to the frequency of visits. The integrand has a max-
imum at r = α, which means that hops of this length are the 
most important. Thus the most frequently visited energy is 
determined by pairs of spatially close sites, separated by the 
localization length α which is much smaller than the typical 
site separation. Such pairs are not important for the charge 
carrier mobility, [8, 47] since a charge carrier cannot move 
any significant distance using only such pairs.

In order to verify the results of the calculation above, we 
perform a Monte Carlo computer simulation of VRH and cal-
culate the average of the visited energies. The algorithm is 
similar to that of Hartenstein and Bässler, [37] except that we 
consider sites randomly placed in space rather than distributed 
on a lattice. The average of the visited energies is shown in 
figure 3. The average over all upward hops is also shown since 
the transport energy is usually derived taking into account 
only upward hops in the hopping-rate optimization approach 
(see section 3). The insets in figure 3 show histograms of the 
number of visits to different energy intervals and a compar-
ison with the function f(εj). Good agreement is seen between 
the simulation results and equation (20), except for the small 
localization length at low temperatures. The latter is due to 
the finite-size effect, which comes in play at small localiza-
tion lengths. In order to warrant representative results, sites 
in the low-energy tail of the DOS must not only be present in 
the system, but be present in pairs separated by the distance of 

the order of α. This is apparently not the case in the left-hand 
histogram, where the number of visits in the low-energy part 
of the histogram is lower than predicted.

The data was obtained for a single electron hopping in 
an otherwise empty system. The electron was started from a 
random position and allowed to perform 108 hops; this proce-
dure was repeated 1000 times. No electric field was applied. 
The simulation was repeated for five realizations of the dis-
order and the results were averaged. The hops in the simula-
tion were restricted to rcut  =  3d, where d  =  N−1/3 gives the 
typical site separation. Increasing the cut-off length rcut did 
not alter the results.

In summary, the most frequently visited energy in the 
GDM can be determined analytically. The result agrees 
with those of a Monte Carlo simulation, yielding that the 
most frequent hops lead to an energy in the vicinity of 
−σ2/2kT. However, these hops are much shorter than the 
typical distance between sites responsible for the charge car-
rier mobility. Therefore, the most frequently visited energy 
cannot be considered as relevant for charge transport and 
cannot serve as a transport energy.

Very recently, Mendels and Tessler [44] have attempted to 
overcome the problem by removing oscillatory hops between 
adjacent sites before the statistical analysis. Although the 
resulting distribution peaks are significantly shifted towards 
higher energies as compared to statistics including oscilla-
tions, it is not sufficient to eliminate cycles between only two 
sites in order to mimic the long-range hopping transport. In 
fact, the approach of tracing the most frequently visited energy 
becomes useful only when all closed cycles in the paths of 
charge carriers are removed before the statistical analysis.

However, removing all closed cycles from a directed graph 
is a very computationally demanding task, especially consid-
ering the large amount of data that is needed for a sufficiently 
accurate numerical study of the long-range hopping transport.

In the following Section, we suggest another approach 
which allows one to determine the transport energy using com-
puter simulations. In that approach, the TE will be deduced 
from the results of carrier mobility and is therefore directly 
related to the long-range charge transport. It will be shown, 
that the transport energy is situated much higher in the DOS 
than −σ2/2kT given by equation (20).

5.  How to find the transport energy in  
numerical simulations

We suggest to determine the TE by studying the effect of a 
DOS modifications on the charge carrier mobility. Thereby, it 
is ensured that the determined energy range is decisive for long-
range transport. The idea is to cut out sites with energies in an 
interval [εcut−w, εcut] from the system and to check, whether and 
how the resulting mobility, determined in straightforward com-
puter simulations, is affected by such a modification of the DOS.

In figure 4, the corresponding modification is depicted. 
Sites in the interval [εcut−w, εcut] are cut out from the DOS 
and are hence unaccessible for carriers during charge trans-
port. Charge carriers must avoid the sites with energies in this 

Figure 3. The average visited energy (squares) as a function of 
temperature, obtained by Monte Carlo simulation in a system with 
106 randomly placed sites at zero electric field. The triangles show 
the average energy of upward hops. The curves show the predicted 
average of the visited energies equation (20) and the corresponding 
prediction for upward hops. The insets show histograms of the 
number of visits as a function of energy, for α = 0.15 d at two 
different temperatures (arrows). The curves show the function f(εj), 
given by equation (19).

J. Phys.: Condens. Matter 26 (2014) 255801



J O Oelerich et al

7

region and find other transport paths. Note, that the DOS is 
not renormalized after the modification. Depending on how 
important the withdrawn sites are for charge transport, the 
cutting will affect the mobility of the system more or less 
severely. We expect the highest drop in the carrier mobility 
when the cut-out sites have been those of highest importance 
for the long-range transport.

In order to justify the suggested method, let us check it 
by application to the exactly solvable hopping model, namely, 
the nearest-neighbor hopping (NNH) on a lattice. We assume 
a system of localized states distributed in an fcc or sc lattice 
structure. The site energies follow a Gaussian DOS. Charge 
carriers with finite concentration move via nearest neighbor 
transitions with Miller–Abrahams hopping rates given by 
equation (2). Percolation theory provides an exact analytical 
expression for the carrier mobility in this system [48]:

⎜ ⎟
⎛
⎝

⎞
⎠μ ε ε μ ε ε ε= −λg

kT
( , ) [ ( ) ] exp ,crit F 0 crit

F crit
� (22)

where μ0 and λ do not depend on the DOS. The critical 
energy εcrit is obtained from the DOS via equation (3). Since 
equation (22) can be applied to any DOS function, it provides 
a perfect tool to test the approach of searching for the TE by 
DOS modifications.

In order to perform such a test, let us cut an interval 
[εcut−w, εcut] from the Gaussian DOS and check how it affects 
the carrier mobility. The modified DOS vanishes in the chosen 
energy interval:

ε
ε ε ε

ε= ∈ −⎧
⎨
⎩

g
w

g
*( )

0 if [ , ],
( ) otherwise.

cut cut
� (23)

Both εcrit and εF in equation (22) depend on the density of 
states and therefore need to be recalculated. Since the perco-
lation threshold xc and the carrier concentration n are inde-
pendent of the shape of the DOS, we can use the following 
equations to determine the values ε*crit and ε*F  for the modified 

DOS from the values εcrit and εF valid for the unmodified 
Gaussian DOS:�

(24)

∫

∫ ∫

ε ε ε ε

ε ε ε ε ε ε ε ε

=

= +
ε

ε

−∞

∞

−∞

− ∞

n g f

g f g f

( ) ( , ) d

( ) ( , *)d ( ) ( , *)d

w

F

F F

cut

cut

�

(25)

In the above equations, the cut-out interval [εcut−w, εcut] 
was simply removed from the integration ranges. Inserting 
the values for ε*crit and ε*F  into equation (22) one obtains the 
mobility dependent on the cutout interval:

μ ε μ ε ε* = * *w( , ) ( , ) .cut crit F� (26)

By comparing this result to that for the unmodified DOS one 
can study the effect of the DOS modification on the carrier 
mobility.

In figure 5, the ratio μ*(εcut, w)/μ(εcrit, εF) is plotted as a 
function of the upper boundary of the cutout interval, εcut. The 
interval width w is fixed at w = 0.05σ and results for two dif-
ferent lattice structures, fcc and sc are depicted.

The figure clearly demonstrates that the mobility drops sig-
nificantly when cutting out sites in the vicinity of the critical 
energy εcrit. This is the expected result.

There is another interesting peculiarity demonstrated by the 
curves in figure 5: when the cutout interval overlaps with the 
energy ε∞ = –σ2/kT the carrier mobility increases. This happens 
for the following reason. In the Gaussian DOS and in thermal 
equilibrium most carriers occupy sites around the so-called equi-
libration energy ε∞. Removing sites around this energy pushes 
carriers to higher energies and hence decreases the activation 
energy necessary for activation to the transport path, which leads 
concomitantly to the increase of the carrier mobility.

∫ ∫ ∫ε ε ε ε ε ε= = +
ε ε

ε

ε

−∞ −∞

− *

x g g g( ) d ( ) d ( ) dc

wcrit cut

cut

crit

Figure 4. Schematic picture of the modified DOS g(ε). Sites with 
energies in the interval [εcut−w, εcut] are removed from the system 
and therefore not available for charge transport.

Figure 5. The mobility value of the modified DOS relative to the 
unmodified one as a function of the upper cutout interval boundary. 
Temperature kT = 0.25σ and the cutout interval width w = 0.05σ. 
Evaluation is stopped when εcrit < εcut −w, hence the discontinuity in 
the curves.
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The above results, obtained by the exactly solvable model of 
nearest-neighbor hopping on a lattice, demonstrate the validity 
of the suggested approach for revealing the position of the TE: 
To cut out sites with particular energies and check the effect of 
such a modification on the calculated carrier mobility. Below we 
apply this approach to the problem relevant to the charge trans-
port in real systems, namely to the VRH in the Gaussian DOS.

In order to study the effect of the DOS modification for 
the case of the VRH, we calculate the charge carrier mobili-
ties numerically using the balance equation (BE) approach. 
[49, 50] By varying the width w and the upper boundary εcut of 
the cutout interval (see figure 4), one can find at which w and 
εcut the maximal effect in the decrease of the carrier mobility is 
achieved, thereby revealing the energy range most important for 
charge transport. The results are presented in figure 6. Results 
for two different widths, w = 0.25σ and w = 0.5σ at different 
temperatures kT are compared. In all cases, motion of a single 
charge carrier in an otherwise empty system was simulated. 
The localization length was chosen as α = 0.215 N−1/3 and the 
number of sites in the simulated system was equal to 903.

It is clearly visible in the figure, that a significant decrease 
in the resulting mobility appears in each of the curves for a 
certain energy range of withdrawn sites. The effect is larger for 
larger energy intervals w, yet more accurate for lower values 
of w, since in that case the system is affected less severely. 
The choice of the interval width w should therefore be a com-
promise between the visibility of the effect and the accuracy 
in determining the position of the most efficient εcut. We inter-
pret the minima on the curves plotted in figure 6 as pointing 
at the position of the real transport energy (TE) responsible 
for the long-range charge transport. The position of the TE, 
as determined from figure 6, shifts upwards in energy with 
rising temperature. This agrees with all previous analytical 
and numerical studies. The vertical lines close to the minima 
of the mobility curves in figure 6 show the positions of the 
TE calculated from equation (13). Apparently, the optimiza-
tion approach leading to equation (13) (outlined in section 3) 
is supported by the results of the straightforward computer 
simulations of the carrier mobility presented in figure 6.

Figure 6 also shows, that when sites in the vicinity of the 
average carrier energy ε∞ = −σ2/kT are cut out, the mobility is 

slightly increased. This is literally the effect discussed above 
with respect to the exactly solvable model of the nearest-
neighbor hopping on a lattice; It is clearly visible in figure 5. 
When sites with energies in the vicinity of the equilibration 
level ε∞ = −σ2/kT are removed from the system, the average 
carrier energy increases, which diminishes the activation 
energy to the TE and leads to an increase of the mobility.

For the given temperature range the minima of the μ(εcut) 
curves in figure 6, which we interpret as the real transport 
energy related to long-range charge transport, are situated 
close to the center of the DOS. It seems therefore correct to 
assume in a simplified approach that the TE coincides with 
the center of the Gaussian DOS, as was suggested before 
[1, 51]. It means that although charge carriers spend most 
time in states with energies around the equilibration energy 
ε∞ = −σ2/kT, transport takes place via sites with much higher 
energies than ε∞.

The data in figure 6 shows another remarkable feature, 
namely that the removal of sites with energies in the vicinity 
of the energy −σ2/2kT does not affect the carrier mobility sig-
nificantly. This shows that it is wrong to interpret the VRH 
charge transport in the Gaussian DOS as activation of carriers 
from some particular energy level εstart to the transport energy 
εt. If the latter interpretation was correct, the observation of the 
mobility temperature dependence in the form of equation (8) 
with C2≈1/2 would yield the value εstart ≈ −σ2/2kT for εt≈0. The 
fact that cutting sites with energies in the vicinity of the level 
−σ2/2kT does not affect the mobility means that this energy 
level does not play any significant role for charge transport. 
The temperature dependence of carrier mobility in the form 
of equation (8) is instead the result of the time averaging over 
the upward hops to the TE from deeper energy levels [2, 31].

6.  Energy level responsible for non-equilibrium 
energy relaxation

While it is well established that the percolation nature of the 
VRH plays a decisive role for long-range conductivity [8], it is 
not clear whether the percolation features have anything to do 
with the description of the energy relaxation of charge carriers 
towards the equilibrium distribution. It is worth noting that the 
concept of the TE was initially invented to study the relaxation 
behavior of charge carriers, showing particularly that these 
dynamics can be described in the framework of the MT model 
by replacing the mobility edge by the TE [23]. The MT model, 
in its turn, was initially developed [16–18] also in order to 
describe the energy relaxation of the non-equilibrium car-
rier distribution in systems with a mobility edge. During the 
relaxation phase, before thermal equilibrium is achieved, the 
carrier mobility depends on time, which is the essence of the 
so-called dispersive transport. In the GDM, dispersive trans-
port takes place before charge carriers have relaxed in energy 
either to the equilibration energy ε∞ = −σ2/kT, if ε∞ > εF, or to 
the Fermi energy, if ε∞ < εF.

Let us consider the case of small carrier concentrations n 
so that ε∞ > εF. Baranovskii et al [31] estimated the time τrel 
necessary for carriers to achieve thermal equilibrium around 

Figure 6. The mobility in a system with absent sites in the interval 
[εcut−w, εcut]. The vertical lines next to the minimum of the mobility 
are the analytical results from equation (13).
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ε∞ = −σ2/kT in the Gaussian DOS: They calculated τrel as the 
time needed for activation from ε∞ towards the level εt

rel, cal-
culated without taking percolation arguments into account [25, 
31]. This led to a temperature dependence of τrel in the form [31]

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

τ σ∝ B
kT

exp ,rel

2

� (27)

with B ≈ 1 resolving the puzzle about the difference between 
the values of the coefficients C2 ≃ 1/2 and B ≃ 1 in equations 
(8) and (27), respectively, raised by the results of computer 
simulations [1, 12, 52, 53]. The quantity εt

rel was calculated 
[25, 31] via equation (13) with Bc = 1. Apparently, the level 
εt

rel for the energy relaxation of carriers does not coincide with 
the TE εt responsible for the long-range transport calculated 
with Bc ≃ 2.7.

A similar result has recently been obtained by Germs et al 
[54], who performed Monte Carlo (MC) simulations of the 
carrier energy relaxation in the GDM and found the position 
of the energy level Ec

MC that would describe numerical results 
in the framework of the MT model with replacing the mobility 
edge by Ec

MC. It was found that Ec
MC depends on the ratio σ/kT, 

i.e., depends on temperature T for a given value σ. Although it 
is not specified explicitly, one can guess that Germs et al [54] 
studied the nearest-neighbor hopping (NNH) process on a lat-
tice. Otherwise the localization length α, not at all specified in 
the paper by Germs et al [54], would have come in play as an 
additional decisive parameter. On the other hand, equation (3), 
that determines the position of the TE Ec responsible for the 
long-range transport in the NNH on a lattice, depends only on 
the energy scale σ of the DOS and not on temperature T. This 
clearly illustrates the difference between Ec

MC and Ec. It would 
be desirable to extend the study from the oversimplified model 
of the NNH on a lattice, that yields the transport energy Ec 
dependent on the choice of the lattice structure [13], to a more 
realistic problem of the VRH in the GDM.

Assuming carrier relaxation in the VRH, the interesting 
question is whether or not to include the percolation nature 
of transport in such considerations, e.g., when calculating 
the transport energy εt to replace the mobility edge in the 
MT model. If the average spatial displacement of carriers 
during relaxation, i.e., before they reach the equilibration 
energy ε∞, exceeds the correlation length L of the perco-
lating cluster [8, 14], percolation criteria are expected to be 
necessary for the description of the relaxation dynamics; in 
case the displacement is smaller than L, percolation should 
probably not play a significant role in the relaxation proper-
ties. This topic exceeds the scope of the current report and 
remains an open question.

7.  Conclusions

A new numerical approach is suggested to determine the trans-
port path of hopping charge carriers in a steeply decreasing 
DOS. The approach is based on simulating the effect of a DOS 
modification on charge transport properties. The method is 
applied to the Gaussian DOS relevant for organic disordered 
semiconductors. Our numerical calculations confirm the 

validity of the analytical approach to calculate the transport 
energy via optimization of hopping rates [22].

It is also rigorously proven by analytical calculations 
and numerical simulations that algorithms based on tracing 
the energies of the most frequently targeted localized states, 
although widely applied, are not suitable to determine the 
position of the transport energy.
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